skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de Siqueira, Alexandre Gomes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simulating real-world experiences in a safe environment has made virtual human medical simulations a common use case for research and interpersonal communication training. Despite the benefits virtual human medical simulations provide, previous work suggests that users struggle to notice when virtual humans make potentially life-threatening verbal communication mistakes inside virtual human medical simulations. In this work, we performed a 2x2 mixed design user study that had learners (n = 80) attempt to identify verbal communication mistakes made by a virtual human acting as a nurse in a virtual desktop environment. A virtual desktop environment was used instead of a head-mounted virtual reality environment due to Covid-19 limitations. The virtual desktop environment experience allowed us to explore how frequently learners identify verbal communication mistakes in virtual human medical simulations and how perceptions of credibility, reliability, and trustworthiness in the virtual human affect learner error recognition rates. We found that learners struggle to identify infrequent virtual human verbal communication mistakes. Additionally, learners with lower initial trustworthiness ratings are more likely to overlook potentially life-threatening mistakes, and virtual human mistakes temporarily lower learner credibility, reliability, and trustworthiness ratings of virtual humans. From these findings, we provide insights on improving virtual human medical simulation design. Developers can use these insights to design virtual simulations for error identification training using virtual humans. 
    more » « less
  2. Immersive Virtual Environments (IVEs) incorporating tangibles are becoming more accessible. The success of applications combining 3D printed tangibles and VR often depends on how accurately size is perceived. Research has shown that visuo-haptic perceptual information is important in the perception of size. However, it is unclear how these sensory-perceptual channels are affected by immersive virtual environments that incorporate tangible objects. Towards understanding the effects of different sensory information channels in the near field size perception of tangibles of graspable sizes in IVEs, we conducted a between-subjects study evaluating the accuracy of size perception across three experimental conditions (Vision-only, Haptics-only, Vision and Haptics). We found that overall, participants consistently over-estimated the size of the dials regardless of the type of perceptual information that was presented. Participants in the haptics only condition overestimated diameters to a larger degree as compared to other conditions. Participants were most accurate in the vision only condition and least accurate in the haptics only condition. Our results also revealed that increased efficiency in reporting size over time was most pronounced in the visuo- haptic condition. 
    more » « less